
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220785821

MarineBlue: A Low-cost Chess Robot.

Conference Paper · January 2003

Source: DBLP

CITATIONS

17
READS

1,119

2 authors, including:

Yolande Berbers

KU Leuven

45 PUBLICATIONS 475 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yolande Berbers on 01 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220785821_MarineBlue_A_Low-cost_Chess_Robot?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220785821_MarineBlue_A_Low-cost_Chess_Robot?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yolande_Berbers2?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yolande_Berbers2?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KU_Leuven?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yolande_Berbers2?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yolande_Berbers2?enrichId=rgreq-07765878fe06ebc0eb1c265fe78427bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc4NTgyMTtBUzoxMDMyNzg4NzIzNjcxMjVAMTQwMTYzNTAxMDk2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

MarineBlue: A Low-Cost Chess Robot

David URTING and Yolande BERBERS
{David.Urting, Yolande.Berbers}@cs.kuleuven.ac.be

KULeuven, Department of Computer Science
Celestijnenlaan 200A, B-3001 LEUVEN

Belgium

ABSTRACT

This paper describes the development of a chess-playing
robot called MarineBlue. This robot consists of three
components: a computer vision component to recognize
chess board situations, a chess engine component to
compute new moves and a robot control component to
execute these moves by means of a robot arm. In the
paper, we focus on the algorithms that have been used to
implement the computer vision and robot control
components. The MarineBlue robot is fully autonomous,
in the sense that it can recognize the moves done by a
user, calculate a move in response to the user’s move and
control a robot arm to perform this calculated move. The
robot that was used to develop MarineBlue is a low-cost,
educational robot, which results in a cost-effective and
compact chess-playing robot.

KEY WORDS: Multimedia Robotics, Computer
Vision, Chess Robot, Entertainment and Games

1. INTRODUCTION

This paper describes the development of a chess robot –
MarineBlue1 – that consists of a robot arm and a digital
camera. The main goal was to develop a compact and
low-cost robot for educational and entertainment
purposes. This paper will focus on the robotic and vision
parts of the chess robot and the integration between both.
The chess algorithm principles will not be discussed in
this paper.

In past centuries, many people have been fascinated by
the idea of constructing an autonomous chess-playing
machine. Researchers in the field of artificial intelligence
have been working extensively on chess algorithms
during the past decades: in 1950 Alan Turing wrote the
first chess program, making use of simplified rules
because of the limited available computing power. In
1957 the first fully functional chess program was
developed, though it was initially too weak to win against
a human opponent. It took until 1996 – when IBM’s Deep

1 This paper is based on work done within the scope of Stijn
Debruyckere’s Master’s thesis (2002).

Blue defeated chess master Garry Kasparov – before a
chess algorithm was considered better than a human chess
player.

In addition to the algorithmic attention the chess game
received from the AI world, there were also people
working on the development of mechanical chess playing
machines. The first construction was the ‘Turk’ made in
1769 by Wolfgang von Kempelen, which gave the illusion
of being autonomous, (though it was in fact operated by a
human). With the advent of the computer, it became
possible to build autonomous chess robots. However,
most chess robots are either expensive and large, or else
they are limited in their freedom of movement and
functionality.

2. MARINEBLUE COMPONENTS

This section describes the components that were used for
the construction of the chess robot. MarineBlue consists
of 4 essential parts: the chessboard and chess pieces, the
camera, the robot arm and the chess computer. The robot
arm is a Robix RC-6 [1], which is a small and
configurable robot that is used for entertainment and
education purposes.

2.1. CHESSBOARD AND PIECES

To maximize the usability of MarineBlue, it is obviously
best to use a common chessboard with standard wooden
cylindric chess pieces.

As for the pieces, it was possible to adhere to this
constraint. At first, the possibility of uniformizing all the
chess pieces such that it would be easier to move them
was considered. Finally, however, it seemed that a
modification of the gripper would be the best possible
solution.

The chessboard did have to be modified, however. A
standard board has square sections with a side length of
between 40 and 50 millimeters. This means that the total
length of one side of the chessboard is at minimum 32
centimeters and at maximum 40 centimeters. The robot
arm’s range is insufficient for such a board. In order to
solve this problem, the length of a square section was

reduced to 30 millimeters, in combination with a small
extension of the robot arm.

A second board modification concerns the color of the
square sections. Since the vision algorithm has to detect
which sections are occupied and which are not, the colors
of the square sections and the chess pieces play an
important role. To guarantee a robust algorithm,
disjunctive colors had to be chosen.

2.2. CAMERA

The camera that is used is a Sony DFW-VL500 [2], a
high-quality camera. This is important since the quality of
recorded images determines to a great extent the quality
of vision applications. The camera was mounted 1 meter
above the chessboard in order to minimize the perspective
effects.

The camera complies with the IEEE 1394 [3] standard
and sends its images uncompressed to the chess computer,
where they are processed. Since a continuous flow of
images is not necessary for this chess application, the
camera is used in single frame mode. The interval
between two frame shots is chosen small enough to keep
the response time low. These frames are then analyzed in
order to detect board situation changes.

2.3. ROBOT

The robot that is used is a Robix RC-6 [3], which is a
small and configurable robot used for entertainment and
education purposes. This robot is not a top performer in
terms of precision and power, but the ability to be easily
modified and its low price make this robot an excellent
choice.

The Robix robot consists of a set of separate segments
that can be attached to one another. These segments can
move with respect to each other by means of servos. In
addition, a gripper can be attached to the last segment.
The servos are controlled by means of a controller, which
is attached to the parallel port of the chess computer.
Servo commands are sent in a Robix-dependent scripting
language.

2.3.1. RADIUS

One of the problems experienced with the robot arm was
its limited radius, which results in the fact that not all
corners of the board could be reached. This problem has
been solved, as mentioned earlier, by creating a smaller
chessboard and extending some of the robot’s segments.
However, extending the segments also resulted in
inaccuracies at the extreme limits of its reach. This issue
has been dealt with by using a modified gripper (see
section 2.3.2).

Three segments are used to move the arm in parallel to the
board, and a fourth segment moves vertically on the third
segment. The gripper has been attached to this fourth
segment. A side view of this configuration is shown in
Figure 1. A view from above is presented in Figure 2.
Actual lengths are in millimeters.

Figure 1: Side view of robot configuration

Figure 2: View of robot configuration from above

2.3.2. GRIPPER

To increase the accuracy of the robot arm (and to reduce
possible swing problems) the gripper was made lighter by
removing one degree of freedom: due to the cylindric
form of the chess pieces, it was possible to remove the
servo responsible for rotating the gripper.

The form of the gripper was also modified for this
particular chess application. Firstly, the gripper was made
longer since otherwise it would collide with other chess
pieces when picking up a particular chess piece.
Secondly, a hemispherical form was used in such a
manner that it corrects small positioning errors.

There are other alternatives for improving the accuracy of
the robot: the chessboard could be made much smaller
than it is now, or we could switch to a more accurate –
and expensive – robot, or we could use some feedback
mechanism from the camera to the robot controller.

2.4. CHESS COMPUTER

The entire application that analyses the board situation,
computes the moves and executes them, runs on a
standard Windows 2000 computer with an IEEE 1394
adapter. The software was developed in C/C++ using MS
Visual Studio.

3. ALGORITHMS

This section describes the algorithms, methods and
techniques that were used for the development of the
software. As was mentioned earlier, this application
covers three important fields of computer science, in
particular: computer vision, artificial intelligence and
robotics. The important algorithms for the first and the
third domains are investigated in more detail in the next
subsections.

3.1. DETECTION OF GAME SITUATION

An important part of the application is the analysis of the
chessboard by means of images that come from the
camera. Firstly, it is necessary to detect the position and
orientation of the chessboard, and secondly it must be
possible to determine for each square section if there is a
chess piece on it and what kind of piece it is.

This functionality has been subdivided in three layers:

� The pixel classification layer extracts features from

images captured by the camera.
� The board layer determines the position of a board

and the pieces on it by means of the features that
were detected in the previous layer.
� The chessboard layer determines the current chess

game situation and gets its input from the board layer.

3.1.1. PIXEL CLASSIFICATION LAYER

As input this layer receives an RGB (Red, Green, Blue)
bitmap from the underlying camera driver. The necessary
features extracted from this image can then be used by the
next layer to recognize the board and the pieces.

Three different alternatives (see [4]) were investigated:
edge detection, template matching and pixel
classification. Ultimately pixel classification was chosen
since it is a simple and robust method for recognizing
board situations. Pixel classification attempts to determine
the class to which each pixel belongs by means of the
(color) attributes of these pixels. Before being able to
classify pixels it is necessary to perform a calibration step
that results in the computation of the color domain for
each class. After this calibration step, one is able to
classify all pixels in the image.

Four classes were defined: light square, dark square, light
piece and dark piece. When using the RGB color space it
seemed that the classes ‘light square‘ and ‘light piece’ did
overlap and as a consequence it was not possible to
perform an accurate pixel classification. An example of
this can be seen on the left chessboard in Figure 3. To
solve this problem, we switched to a HSB (Hue,
Saturation, Brightness) color space, which solved the
overlap problems. This is shown on the right chessboard
in Figure 3.

Figure 3: The figure on the left is the result of RGB
pixel classification. Some pixels of the light pieces were
classified as belonging to a light square. The figure on
the right is the result of HSB classification. Most pixels
have been classified correctly.

3.1.2. BOARD LAYER

The input of this layer is a matrix that states for each pixel
to which class it belongs. From this information it will be
attempted (1) to position the board and pieces in the
image and (2) to determine which squares are occupied
and which squares are not.

Concerning the first functionality, we use a reference
frame having the same color as the dark squares. Firstly,
the algorithm performs a search for the corners of this
reference frame by searching at the extremities of the
image for pixels belonging to the ‘dark square’ class.
Next, the position of each square is computed by means of
interpolation. This is relatively simple since all squares
are equal in size and there are 8 squares for each
dimension. The results of this computation are shown in
Figure 4.

Figure 4: Position of the board and the squares

Next, the algorithm determines (1) which squares are
occupied by pieces and (2) the color of each piece. This
can be done by calculating the number of pixels belonging

to the class ‘light piece’ and the class ‘dark piece’. If this
number exceeds a particular threshold, then the algorithm
decides that there is a piece on the square. The threshold
value is dependent on the surface area that a piece
occupies in proportion to the surface area of a square.

3.1.3. CHESS BOARD LAYER

As input, this layer gets a list of all squares that are
occupied by a chess piece of a particular color. This layer
also remembers the previous situation of the chessboard
(which can also be regarded as input). By means of this
information, the algorithm will then determine the exact
position of each chess piece in the new board situation.

Since the camera is mounted above the chessboard and
each chess piece has a circular form seen from this point
of view, it is seemingly impossible to determine the type
of each chess piece from only this information. This
problem can be solved quite simply by retrieving the
situation of the board before the last move was done. By
means of this information (in which the exact position and
type of each chess piece before the move is known) and
the new information (in which is known which squares
are occupied after the move), it is always possible to
determine the chess piece that has been moved. The initial
board situation is known when the game starts – since the
chess rules state how the board must be set up – so there
is no need for a configuration step before the game starts.

The algorithm can detect all valid chess moves, even the
castling move (which involves a displacement of the king
and the rook), given that the user adheres to the chess
playing rules. Some cheating actions, such as swapping
two chess pieces of the same color would go unnoticed by
this algorithm, since it will not detect any changes on the
chessboard in that case. The reason for this is that the
board layer only recognizes the color of a piece, not its
type.

3.2. CHESS ALGORITHM

We did not develop this part of the application. Instead an
existing chess algorithm implementation was used, more
specifically the GNU GPL Chessterfield implementation
(see [5]). Alternative implementations can be integrated
relatively simply since a generic interface is used to
communicate with the algorithm.

3.3. ROBOT CONTROL

The most important problems that were encountered when
developing the MarineBlue application were related to the
robot control part. These problems were especially due to
the limited capabilities of the hardware.

This section will focus on the algorithms that are used to
control the robot arm. The functionality that was aimed at

was the development of an algorithm that translates high-
level commands (move the piece from board coordinate
(2,b) to board coordinate (2, c)) to low-level commands
for the robot’s servos.

3.3.1. KINEMATICS LAYER

This subsection focuses on the inverse kinematics part,
which calculates the different angles of the servos given a
particular configuration of the robot and a requested
position of the gripper. In order to set up this inverse
kinematics algorithm, certain simplifications are carried
out, which are removed later without many additional
computations.

The simplification that is mentioned above concerns
segments 3 and 4. Initially it was said that segment 4 is
attached to the gripper and that it can turn vertically on
segment 3. Segments 1, 2 and 3 move in a plane that is
horizontal with the chessboard. We suppose now that the
angle between segments 3 and 4 is always zero, such that
it is now possible to consider a new extended segment
‘34’. The total length of this segment is the sum of the
lengths of the constituting segments.

Figure 5 illustrates what needs to be computed: given a
requested position (250, 70)2, the angles θ1, θ2 and θ3
need to be known. The position of the gripper is also
determined by the angle γ between the last segment and
the horizontal axis. Since a standard chess piece is
cylindrical, this angle will have no significance in terms
of the ability of the gripper to pick up the piece. However,
this angle will remain in the calculations that are
described in what follows.

Figure 5: Inverse kinematics (view from above)

The solution of inverse kinematics problems is generally
quite complicated and computing-power-intensive. For
instance, it is not possible to solve this problem
analytically for six or more segments. For most robot
arms it is however possible to make major simplifications
such that it can be solved analytically.

2 These are ‘robot’ coordinates. Translation from ‘chess board’
coordinates to ‘robot’ coordinates is done at a higher level.

As a result of the assumption made above that segment 4
is always in line with segment 3, the calculations are
simplified to calculations made in a plane parallel to the
chessboard.

The formulas from which one can start3 are:

3.1: γ = θ1 + θ2 + θ3
P = a1 + a2 +a3

The second formula can be rewritten as formula 3.2:

x = a1c1 + a2c12 + a3c123
y = a1s1 + a2s12 + a3s123

with

c1 = cos(θ1) s1 = sin(θ1)
c12 = cos(θ1 + θ2) s12 = sin(θ1 + θ2)

c123 = cos (θ1 + θ2 + θ3) s123 = sin(θ1 + θ1 + θ1)

Given the requested gripper position (x,y,γ), the intent is
now to solve the above equations for the three unknowns
θ1, θ2 and θ3.

Substitution of 3.1 in 3.2 gives formula 3.3:

x – a3cγ = a1c1 + a2c12
 y – a3sγ = a1s1 + a2s12

At this point, two unknowns (θ1 and θ2) remain. Squaring
and summing both equations eliminates θ1:

(x – a3cγ)2 + (y – a3sγ)2 = a1
2 + a2

2 + 2a1a2c2

This results in two solutions for θ2:

θ2 = +/- arctan(s2/c2)

To determine θ1 one can substitute θ2 in 3.3. This also
results in two solutions (depending on the actual θ2 that is
substituted):

θ1 = arctan(s1/c1)

Finally, by using 3.1 it is also possible to determine θ3:

θ3 = γ - θ1 - θ2

If the requested position (x,y,γ) can be reached by the
robot arm, then there exist two possibilities for reaching
that position. Given that the angle γ is of no importance, it
can be stated that there are an infinite number of
solutions. The method that is used here is to increase the
angle γ with small increments (e.g. increments of 5

3 This derivation is based on [6].

degrees) and to calculate the two solutions corresponding
to this γ, if these two solutions exist.

When all solutions are computed, the best one is chosen.
Typically one chooses the solution that incurs the least
possible movement of the arm. The disadvantage of this
approach is that the angles between the segments of the
arm become dependent on the previous movement(s).
This means that a particular square can be reached with
the arm having different sets of servo positions and, as a
consequence, the deviation of the gripper will also vary.
To avoid this problem, MarineBlue will select the set of
servo positions that is closest to the ideal position of the
arm. The ideal position is the position in which each servo
is positioned in the middle of its reach. This strategy
ensures that the servos will rarely take up their extreme
positions for reaching a particular square.

Until now it has been supposed that the fourth segment
was an extension of the third segment, such that it always
moves in a horizontal plane. However, when a chess piece
is to be picked up, the fourth segment has to move
vertically and thus the initial assumption is not valid
anymore. Figure 6 illustrates that it is not only the fourth
segment that has to move, but rather that the origin of this
fourth segment also has to move in order to keep the
center of the gripper above the piece. This is necessary;
otherwise the gripper could collide with the chess piece
(or adjacent chess pieces.)

Figure 6: Horizontal displacement of the fourth
segment when moving downwards and upwards

As a result, we can no longer assume that the length of the
34 segment equals the sum of the real lengths of segments
3 and 4. This length needs to be computed. From Figure 7
it becomes clear that this length can be derived from the
following formula:

l = l3 + l4 .cos(α) + h.sin(α)

The length of segment 34 is thus always recalculated.
This way the simplification – for computing the inverse
kinematics – can be retained.

To pick up a piece, the gripper will move downwards in
an opened state. The origin of the fourth segment moves
to the left (of the figure) at the same time. The gripper

closes and clasps the chess piece. Next, the gripper moves
upwards and the origin of the segment moves to the right
of the figure. This is shown in Figure 6 as the horizontal
displacement. This horizontal displacement when moving
upwards and downwards ensures that the center of the
gripper is kept right above the chess piece.

Figure 7: The computed length (l) of segment 34.

3.3.2. COMMAND LAYER

The command layer is situated right above the inverse
kinematics layer. It is responsible for transforming high-
level robot command sequences (such as ‘open gripper’,
‘close gripper’ and ‘move to’) into Robix script
commands. This layer makes use of the inverse
kinematics in order to transform chessboard coordinates
into angles for controlling the servos.

3.3.3. ROBOT CALIBRATION

The calibration of the robot arm is done in three parts: (1)
the length of the segments is measured, (2) for each servo
a mapping is made between angles (degrees) and
corresponding servo positions, and (3) the robot arm has
to know the location of the chess board in robot
coordinates. To perform this last calibration step, the
robot arm is ‘trained‘4: the user indicates the four corners
of the chessboard by moving the robot arm to these
corners. The position of each square can then be easily
determined by means of interpolation.

4. SOFTWARE ARCHITECTURE

The high-level architecture of the MarineBlue software
consists of three algorithmic modules (vision, chess
engine and robot control), an application layer and the
GUI. Figure 8 presents a schematic overview of this
architecture.

4 An alternative approach would be the provision of feedback
from the camera to the robot arm.

The application layer is responsible for controlling the
entire chess game, which amounts to (1) the capture and
analysis of an image, (2) the computation of a new move
(if the human opponent has performed a move) and,
finally, (3) the transformation of the computer’s move
into high-level instructions for the robot arm. This process
repeats itself until the game is over.

The GUI layer is a Windows front-end for MarineBlue,
which contains the necessary functionality for calibrating
the vision and robot modules.

Figure 8: MarineBlue's software architecture

5. CONCLUSION

This paper gives an overview of the high-level design and
implementation of an autonomous chess robot, which
consists of three main functionalities: recognizing chess
board situations, computing new moves and executing
these moves by means of a robot arm.

The chess robot can be used for educational and
recreational purposes, because it has been built from
relatively simple components. Since the basic software
architecture consists of three independent modules, it is
relatively easy to change the algorithms or hardware-
dependent modules.

REFERENCES

[1] Robix RCS-6, http://www.robix.com
[2] Sony DFW-VL500, http://www.sony.com
[3] FireWire IEEE 1394, http://www.apple.com/firewire/
[4] Sergios Theodoridis, Konstantinos Koutroumbas, “Pattern
Recognition”, Academic press San Diego, 1999
[5] Matthias Lüscher, GNU Chessterfield
[6] John J. Craig, “Introduction to Robotics, Mechanics and
Control”, Addison-Wesley, 1986

View publication statsView publication stats

http://www.robix.com/
http://www.sony.com/
http://www.apple.com/firewire/
https://www.researchgate.net/publication/220785821

